High-Speed CMOS Logic Quad Bilateral Switch

Features

- Wide Analog-Input-Voltage Range \qquad OV to 10V
- Low "ON" Resistance
- 45Ω (Typ).
$. \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
- 35Ω (Тур). $\mathrm{V}_{\text {CC }}=6 \mathrm{~V}$
- 30Ω (Тур). $1 \mathrm{fc} \mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}$
- Fast Switching and Propagation Delay Times
- Low "OFF" Leakage Current
- Built-In "Break-Before-Make" Switching
- Suitable for Sample and Hold Applications
- Wide Operating Temperature Range ... $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- HC Types
- 2V to 10V Operation
- High Noise Immunity: $\mathrm{N}_{\mathrm{IL}}=30 \%, \mathrm{~N}_{\mathrm{IH}}=30 \%$ of V_{CC} at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Description

The CD74HC4016 contains four independent digitally controlled analog switches that use silicon-gate CMOS technology to achieve operating speeds similar to LSTTL with the low power consumption of standard CMOS integrated circuits.

Each switch has two input/output terminals (nY, nZ) and an active high enable input (nE). Current through the switch will not cause additional V_{CC} current provided the analog voltage is maintained between V_{CC} and GND.

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE
CD74HC4016E	-55 to 125	14 Ld PDIP
CD74HC4016M	-55 to 125	14 Ld SOIC
CD74HC4016MT	-55 to 125	14 Ld SOIC
CD74HC4016M96	-55 to 125	14 Ld SOIC
CD74HC4016PW	-55 to 125	14 Ld TSSOP
CD74HC4016PWR	-55 to 125	14 Ld TSSOP

NOTE: When ordering, use the entire part number. The suffix 96 denotes tape and reel. The suffix T denotes a small-quantity reel of 250.

Pinout

CD74HC4016
(PDIP, SOIC, TSSOP)
TOP VIEW

Functional Diagram

TRUTH TABLE

INPUT nE	SWITCH
L	OFF
H	ON

H = High Level Voltage L = Low Level Voltage

Logic Diagram

Absolute Maximum Ratings	
DC Supply Voltage, V_{CC}	-0.5V to 7V
DC Input Diode Current, $\mathrm{I}_{1 \mathrm{~K}}$	
For $\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{C C}+0.5 \mathrm{~V}$	$\pm 20 \mathrm{~mA}$
DC Drain Current, per Output, I_{0}	
For $-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$.	$\pm 25 \mathrm{~mA}$
DC Output Diode Current, IOK	
For $\mathrm{V}_{\mathrm{O}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\pm 20 \mathrm{~mA}$
DC Output Source or Sink Current per Output Pin, Io	
For $\mathrm{V}_{\mathrm{O}}>-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\pm 25 \mathrm{~mA}$
DC V $\mathrm{CCC}^{\text {or Ground Current, }} \mathrm{I} \mathrm{CC}$	$\pm 50 \mathrm{~mA}$

Operating Conditions

Temperature Range, T_{A} \qquad
Supply Voltage Range, V_{CC}
HC Types
Output Voltage, V_{I}, V_{O} 2 V to 10 V
DC Input or Output Voltage, $\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{O}} \ldots \ldots \mathrm{OV}$ to V_{CC} Input Rise and Fall Time

2 V	1000ns (Max)
4.5 V	500ns (Max)
6 V	400ns (Max)
9 V	250ns (Max)

Thermal Information

Thermal Resistance (Typical, Note 1) $\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ E (PDIP) Package . 80
M (SOIC) Package
80
PW (TSSOP) Package
Maximum Junction Temperature (Plastic Package) $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implie

NOTE:

1. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

PARAMETER	SYMBOL	TEST CONDITIONS			$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
		$V_{1}(\mathrm{~V})$	$\mathrm{V}_{\text {IS }}(\mathrm{V})$	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
HC TYPES												
High Level Input Voltage	V_{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V
				4.5	3.15	-	-	3.15	-	3.15	-	V
				6	4.2	-	-	4.2	-	4.2	-	V
Low Level Input Voltage	V_{IL}	-	-	2	-	-	0.5	-	0.5	-	0.5	V
				4.5	-	-	1.35	-	1.35	-	1.35	V
				6	-	-	1.8	-	1.8	-	1.8	V
"ON" Resistance$\mathrm{I}=1 \mathrm{~mA}$	RON	$\begin{gathered} \mathrm{V}_{\mathrm{IH}} \text { or } \\ \mathrm{V}_{\mathrm{IL}} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \text { or } \\ & \mathrm{GND} \end{aligned}$	4.5	-	45	180	-	225	-	270	Ω
				6	-	35	160	-	200	-	240	Ω
				9	-	30	135	-	170	-	205	Ω
				4.5	-	85	320	-	400	-	480	Ω
				6	-	55	240	-	300	-	360	Ω
				9	-	35	170	-	215	-	255	Ω
Maximum "ON" Resistance Between Any Two Switches	R_{ON}	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \text { or } \\ & \mathrm{V}_{\mathrm{IH}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \text { or } \\ & \mathrm{GND} \end{aligned}$	4.5	-	10	-	-	-	-	-	Ω
				6	-	8.5	-	-	-	-	-	Ω
Switch Off Leakage Current	IZ	$\begin{aligned} & \mathrm{En}= \\ & \text { GND } \end{aligned}$	$V_{C C}$ or GND	6	-	-	± 0.1	-	± 1	-	± 1	$\mu \mathrm{A}$
				10	-	-	± 0.1	-	± 1	-	± 1	$\mu \mathrm{A}$
Logic Input Leakage Current	1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \text { or } \\ & \mathrm{GND} \end{aligned}$	-	6	-	-	± 0.1	-	± 1	-	± 1	$\mu \mathrm{A}$

CD74HC4016
DC Electrical Specifications (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS			$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85{ }^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
		$\mathrm{V}_{1}(\mathrm{~V})$	$\mathrm{V}_{\text {IS }}(\mathrm{V})$	V_{Cc} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
Quiescent Device	ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \text { or } \\ & \mathrm{GND} \end{aligned}$	V_{CC} or GND	6	-	-	2	-	20	-	40	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$				10	-	-	16	-	160	-	320	$\mu \mathrm{A}$

Switching Specifications Input $t_{r}, \mathrm{t}_{\mathrm{f}}=6$ ns

PARAMETER	SYMBOL	TEST CONDITIONS	$V_{c c}$ (V)	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85{ }^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
HC TYPES											
Propagation Delay, Switch In to Switch Out	${ }_{\text {tPLH, }}$ tPHL	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	-	60	-	75	-	90	ns
			4.5	-	-	12	-	15	-	18	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	4	-	-	-	-	-	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	6	-	-	10	-	13	-	15	ns
			9	-	-	8	-	10	-	12	ns
Propagation Delay, Switch Turn-On En to Out	${ }_{\text {tPZH, }}{ }^{\text {tPZL }}$	$C_{L}=50 \mathrm{pF}$	2	-	-	190	-	240	-	285	ns
			4.5	-	-	38	-	48	-	57	ns
		$C_{L}=15 \mathrm{pF}$	5	-	16	-	-	-	-	-	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	6	-	-	32	-	41	-	48	ns
			9	-	-	28	-	35	-	42	ns
Propagation Delay, Switch Turn-Off En to Out	tPHZ, tPLZ	$C_{L}=50 \mathrm{pF}$	2	-	-	145	-	180	-	220	ns
			4.5	-	-	29	-	36	-	44	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	12	-	-	-	-	-	ns
		$C_{L}=50 \mathrm{pF}$	6	-	-	25	-	31	-	38	ns
			9	-	-	22	-	28	-	33	ns
Input Capacitance	C_{1}	-	-	-	-	10	-	10	-	10	pF
Power Dissipation Capacitance (Notes 2, 3)	$\mathrm{CPD}^{\text {P }}$	-	5	-	12	-	-	-	-	-	pF

NOTES:

2. $C_{P D}$ is used to determine the dynamic power consumption, per package.
3. $P_{D}=C_{P D} V_{C C}{ }^{2} f_{i}+\Sigma\left(C_{L}+C_{S}\right) V_{C C}{ }^{2} f_{o}$ where $f_{i}=$ input frequency, $f_{0}=$ output frequency, $C_{L}=$ output load capacitance, $C_{S}=$ switch capacitance, $\mathrm{V}_{\mathrm{CC}}=$ supply voltage.

Analog Channel Specifications $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	$\mathrm{V}_{\mathbf{C C}}(\mathrm{V})$	CD74HC4016	UNITS
Switch Frequency Response Bandwidth at -3dB Figure 3	Figure 6, Notes 4,5	4.5	>200	MHz
Crosstalk Between Any Two Switches, Figure 4	Figure 5, Notes 5, 6	4.5	TBE	dB
Total Harmonic Distortion	$1 \mathrm{kHz}, \mathrm{V}_{\mathrm{IS}}=4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ Figure 7	4,5	0.078	$\%$
	lkHz, $\mathrm{V}_{\mathrm{IS}}=8 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ Figure 7	9	0.018	$\%$

Analog Channel Specifications $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Continued)

PARAMETER	TEST CONDITIONS	V $_{\text {CC }}$ (V)	CD74HC4016	UNITS
Control to Switch Feedthrough Noise	Figure 8	4.5	TBE	mV
		9	TBE	mV
Switch "OFF" Signal Feedthrough, Figure 4	Figure 9, Notes 5, 6	4.5	-62	dB
Switch Input Capacitance, C_{S}		-	5	pF

NOTES:
4. Adjust input level for 0 dBm at output, $\mathrm{f}=1 \mathrm{MHz}$.
5. $\mathrm{V}_{\text {IS }}$ is centered at $\mathrm{V}_{\mathrm{CC}} / 2$.
6. Adjust input for 0 dBm at V_{IS}.

Typical Performance Curves

FIGURE 1. TYPICAL "ON" RESISTANCE vs INPUT SIGNAL VOLTAGE

FIGURE 3. SWITCH FREQUENCY RESPONSE

FIGURE 2. TYPICAL "ON" RESISTANCE vs INPUT SIGNAL VOLTAGE

FIGURE 4. SWITCH-OFF SIGNAL FEEDTHROUGH AND CROSSTALK vs FREQUENCY

Analog Test Circuits

FIGURE 5. CROSSTALK BETWEEN TWO SWITCHES TEST CIRCUIT

FIGURE 6. FREQUENCY RESPONSE TEST CIRCUIT

FIGURE 8. CONTROL-TO-SWITCH FEEDTHROUGH NOISE TEST CIRCUIT

FIGURE 7. TOTAL HARMONIC DISTORTION TEST CIRCUIT

FIGURE 9. SWITCH OFF SIGNAL FEEDTHROUGH

Test Circuits and Waveforms

FIGURE 10. HC/HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

FIGURE 11. SWITCH TURN-ON AND TURN-OFF PROPAGATION DELAY TIMES
www.ti.com

PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CD74HC4016E | ACTIVE | PDIP | N | 14 | 25 | Pb-Free
 (RoHS) | CU NIPDAU | N/A for Pkg Type |
| CD74HC4016EE4 | ACTIVE | PDIP | N | 14 | 25 | Pb-Free
 (RoHS) | CU NIPDAU | N/A for Pkg Type |
| CD74HC4016M96 | ACTIVE | SOIC | D | 14 | 2500 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| CD74HC4016M96E4 | ACTIVE | SOIC | D | 14 | 2500 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| CD74HC4016MT | ACTIVE | SOIC | D | 14 | 250 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| CD74HC4016MTE4 | ACTIVE | SOIC | D | 14 | 250 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| CD74HC4016PW | ACTIVE | TSSOP | PW | 14 | 90 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| CD74HC4016PWE4 | ACTIVE | TSSOP | PW | 14 | 90 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| CD74HC4016PWR | ACTIVE | TSSOP | PW | 14 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| CD74HC4016PWRE4 | ACTIVE | TSSOP | PW | 14 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb -Free/Green conversion plan has not been defined.
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, Tl Pb -Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $.006(0,15)$ per end.
D Body width does not include interlead flash. Interlead flash shall not exceed $.017(0,43)$ per side.
E. Reference JEDEC MS-012 variation AB.

PIMS $^{* *}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
	Wireless	www.ti.com/wireless	

[^0]Copyright © 2006, Texas Instruments Incorporated

[^0]: Mailing Address: Texas Instruments
 Post Office Box 655303 Dallas, Texas 75265

